

Far-IR Astronomy from Near Space

We live in a Galaxy comprised of stars, planets, and people.

Where did it all come from?

C. K. Walker

IR/THz Missions

IR/THz Missions

IR/THz Missions

GUSTO is the Next Step!

Herschel 2009
Spitzer 2003

GUSTO 2020

STO 2012/2016

SWAS 1998

Odin 2001

ISO 1995

IRAS 1983

GUSTO Vastly Improves Available Angular & Spectral Resolution

Galactic Plane Region Near I = 340 IRAS 60 μ m: 2' Resolution

GUSTO Observational Objectives: [CII], [OI], & [NII] Surveys of MW and LMC

Herschel CII line of sight (LOS): GUSTO will observe 540,000 LOS's

25 sq. degree LMC Survey

Stratospheric Terahertz Observatory (STO): Pathfinder for GUSTO

STO provides GUSTO experience:

- Teaming arrangements
- Gondola and instrument architecture
- Observing profile and mission plan
- Data product management

STO-2 [CII] On-the-Fly Map of Carina Nebula

(Site Visit)

STO-2 [CII] On-the-Fly Map of Carina Nebula

NASA's New ULDB: A "Satellite on a String"

 The ULDB enables orbital-quality observations at a fraction of the cost.

 High constant altitude, long-duration flights of 100 days or more, large payload capacity, and likely payload recovery establish a new paradigm for low-cost, high value scientific SPB Test Flight, Kiruna, Sweden

August 15, 2012

SPB View of Earth

3:59:02 06/26/16

observations.

1/18/17

Implementation: Advancing from STO to GUSTO

GUSTO will be a mapping machine

- Optimized, light-weight, low-CTE, terahertz telescope
- 4 x Larger focal plane receiver arrays; adding [OI] capability
- Mapping-optimized observing profile and mission plan
- Optimized for ULDB: 5 x Longer Flight

Implementation: Advancing from STO to GUSTO

GUSTO will be a mapping machine

GUSTO

- Optimized, light-weight, low-CTE telescope, THz telescope
- 4 x Larger focal plane receiver arrays; adding [OI] capability
- Mapping-optimized observing profile and mission plan
- Optimized for ULDB: 5 x Longer Flight

NASA Qualified Balloons

NASA Qualified Balloons

NASA Qualified Balloons

Coming Soon – BLAST-TNG

- 2.5 meter Carbon Fiber Mirror
- 1600+ dual polarization pixels with MKID detectors
- 250, 350, and 500 μm arrays
- 22 arcsec resolution at 250 μm
- 28 day flight!
- 16 times the mapping speed
- First flight December 2017 with Shared Risk Observing

The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

Science Goals

- Bright targets suffering from confusion...
 - AGN
 - Star formation the high spatial resolution of BETTII, with low-res spectroscopy, breaks model degeneracies...

Prospects for Larger Apertures

Prospects for Larger Apertures

10 meter Large Balloon Reflector

100 m

15 m Parachute

15 m

4 m

Service Gondola

LBR Selected for Phase I Study: 2013

Float altitude >135,000 ft

LBR NIAC Phase 1

Steerable 5 meter Prototype at SwRI

Which LBR Location is Better for Pointing Stability? Sets upper limit to telescope size Apex 100 m Gondola? Parachute >> 15 m Only one way to know for sure... 15 m Sensor package test flight: Service _ **LBRSP** 4 m Gondola

LBR Sensor Package Data. Above: Time lapse image of the Moon. Left: Sample accelerometer data. The frequency and amplitude of jitter at the Apex is seen to be much more benign than at the gondola.

FIR/THz Astronomy from Balloons

Ever Increasing Apertures will drive a new era of suborbital science:

- ISM Studies
- Galaxy Evolution
- Cosmology
- Planetary

The Future is Now!